

THE GREEN MICROGRANULATION BY LB

MIGRATECH HYBRID

Why MIGRATECH HYBRID?

The hybrid solution proposed by LB was created to allow customers who already own a wet mill preparation plant to keep the wet grinding active.

This solution is designed both for those customers who need to increase the production of powder to be pressed, and for those customers who want to change the body preparation technology to save energy and money.

The technology consists in mixing dry ground powder with wet ground slip, to obtain a granulate suitable for pressing.

To do this, the customer will need to install a dry grinding mill, a mixing line and a new kind of granulator.

Hybrid plant solutions for microgranulation

With this solution, the same body mixture is ground partly with dry grinding and partly with wet grinding.

The two parts obtained from dry and wet grinding are homogeneously mixed in the appropriate proportions; the obtained semi-finished product is subsequently granulated with a new kind of granulator.

The granulate is brought back to a suitable humidity for the pressing process by fluid bed drying.

In the next slides it will be explained more in detail how the plant is structured and what results it returns from a technological point of view.

Hybrid plant solutions for microgranulation

Hybrid plant solutions for microgranulation

Morphology of the microgranulate

The microgranulate granules are full granules, as opposed to the spray dried granules which are "hollow".

	MG	ATM	Range granulati	Range atomizzati	Scorrevolezza mag- giore quando:
Umidità delle polveri (% in peso)	5.9	6.0	5-8	4-8	Ininfluente
PD (g/cm ³) Poured density	1.003	0.957	0.90-1.02	0.92-1.05	Vedi HR
TD (g/cm ³) Tapped density	1.202	1.104	1.20-1.25	1.03-1.13	Vedi HR
HR (1) Rapporto di Hausner	1.20	1.15	1.22-1.33	1.07-1.17	HR basso (<1.25) Eccellente se <1.15
ARS (°) Angolo di riposo statico	31.6	27.1	30-39	30-35	ARS basso (<45°) Eccellente se <30°
ARD (°) Angolo di riposo dinamico	50.1	39.5	53-70	40-45	ADR basso
FdM (8mm, g/s·cm ²) Flusso di massa	13.8	14.7	11-13	13-16	FdM alto

Rheology of the microgranulate

Results after firing

1200°C, 5'		Microgranulate			Spray dryed		
		average st. de		average	st. dev.		
	Press	Pressing at 40 MPa					
Density after press	g/cm ³	2.433	0.022	2.406	0.004		
Linear shrinkage	cm/m	5.22	0.02	5.61	0.05		
Water absorption	%	0.12	0.08	0.07	0.03		
Apparent porosity	%	0.30	0.21	0.16	0.06		

Case study: MIGRATECH HYBRID installation in an Italian Tiles plant

Project data:

Annual body powder production:	165.000 to
Total granulate flow rate to storage silos:	25 t/h
Dry grinding plant capacity:	13,75 t/h
Wet grinding plant capacity:	11,25 t/h
Plastic raw materials in the body mixture:	38,0%
Hard raw materials in the body mixture:	62,0%
Plastic raw materials average moisture:	17,0%
Hard raw materials average moisture:	5,1%
Cost of Electric energy:	€0,130/k\
Cost of natural gas:	€ 0,250/Sr
Cost of wet grinding additive:	€ 0,300/k

Economic savings hypothesis, without considering the cost of CO2 emissions

System	GP		Plant	4	Country	Italia	
				HYBRID			
Body composition		38	% Plastic materials (clays, kaolin)				
62		% Hard mate	% Hard materials (feldspar, quartz, carbonates)				
		17,0	% Moisture	plastic ma	terials (clays, kaolin)		

Raw materials moisture	17,0	% Moisture plastic materials (clay
	5,1	% Moisture hard materials (felds)

spar, quartz, carbonates)

ENERGY AND MONEY SAVED DATA

	65,8	% Thermal energy saved (% di NOx e CO_2 saved)
Saved with LB	56,5	% Water saved
MIGRATECH 4.0	-4,5	% kWh
	56,0	% Grinding additive saved

		Costs			
E. E. €/kWh	0,13	Gas €/Sm3	0,25	CO₂ €/kg	0,025
Additive €/kg	0,30	Water €/I	-	Maint €/t	-

Economic and resources saving

As it can be seen from the study carried out, the saving of resources is considerable:

Savings in thermal energy:	65,8%
Savings in water:	56,5%
Saving in fluidifying additive:	56 <i>,</i> 0%

There is a slight increase in electricity consumption, based on the plant configuration.

Water cycle management

The management of dirty water is done with a purification plant + filter pressing.

In the hybrid plant, part of the water is used in wet grinding, and the remaining part is purified and sent to the internal circuit for washing the departments (glazing, glaze grinding, etc.).

The filter-pressed cakes are introduced into the body mixture, before the grinding phase.

Water cycle management with Migratech hybrid system

4.720 kg/h

Thank you for your attention

